

Assessing the Impact of the PCFP on Student Achievement: Challenges and Opportunities

April 26, 2024

Agenda

- The need for an impact analysis
- Challenges of inferring impact
- Effects of the PCFP on districts, schools, and students
- Assessing the impact of the PCFP on district-level outcomes

The Need for an Impact Analysis

Benefits of Impact Analysis

An ideal causal analysis of the policy would test efficacy of policy levers

- What should the weights be?
 - Is there diminishing marginal return to concentrated funding?
- For whom should the weights apply?
 - FRPL vs. At-Risk
- Schoolwide vs. targeted to applicable students?
 - Ancillary services vs. core instruction

Challenges of Inferring Impact

Exam Schools vs. Charters in Chicago

	Exam Schools	Noble Network
Black	.33	.44
Hispanic	.30	.52
White	.22	.02

Source: Angrist, Pathak, & Zarate (2019)

Exam Schools vs. Charters in Chicago

	Exam Schools	Noble Network
Black	.33	.44
Hispanic	.30	.52
White	.22	.02
Test Scores	1.45	-0.15

Source: Angrist, Pathak, & Zarate (2019)

Exam Schools vs. Charters in Chicago

	Exam Schools	Noble Network
Black	.33	.44
Hispanic	.30	.52
White	.22	.02
Test Scores	1.45	-0.15
Impact on ACT Math	-0.11	0.34

Source: Angrist, Pathak, & Zarate (2019)

Effects of the PCFP on Districts, Schools, and Students

Compared to What?

- Effect sizes are counterfactual statements
 - The PCFP boosted math scores by 0.2 standard deviations
- Compared to what?
 - Compared to 2019 scores in the same district?
 - Compared to 2023 scores in districts that received less?
- Level of analysis will dictate the comparison group
 - District → school → student

Student

- What is the impact of the PCFP on EL, at-risk, and gifted students?
- Comparison group: students who do not generate funding
- Benefit
 - EL, at-risk, and gifted students are clearly meant to be prime beneficiaries
- Challenges
 - Money can be spent on non-identified students as well
 - Spillovers from treated students ("peer effects")

School

- What is the impact of PCFP revenue on school-level outcomes?
- Comparison group: schools with lower level of funding
- Benefit
 - Intra-school spillovers and schoolwide spending don't lead to biased treatment estimates
- Challenge
 - School-level PCFP revenue is correlated with unobservable determinants of student achievement
 - Unable to assess student mobility (e.g., score "increase" due to differential selection)

District

- What is the impact of PCFP revenue on district-level outcomes?
- Comparison group: ??

Assessing the Impact of the PCFP on District-level Outcomes

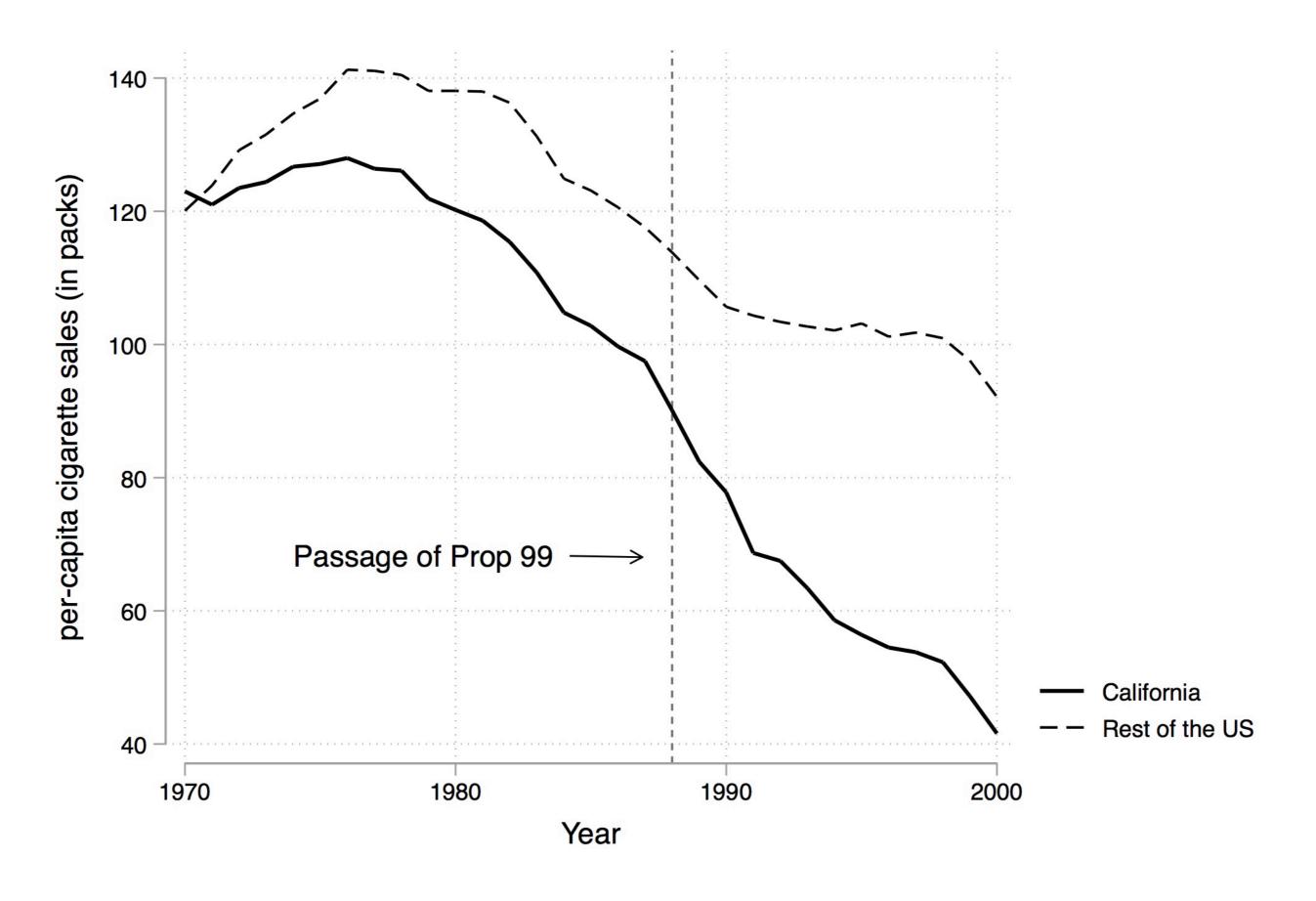
Impact Analysis

- Compared to what?
 - Compared to 2019 scores in the same district?
 - Compared to 2023 scores in districts that received less?
- What would have happened in each district had the PCFP not occurred?
 - We need an "alternate" Clark, Washoe, Carson City, etc.
 - Use similar districts from other states

Overview of Synthetic Control Model

- Used to estimate the impact of an intervention or policy change in an observational setting (compared to an experiment)
- Model is used to construct a comparison group that is statistically similar to the treated group using weighted shares of other groups that were not treated

Observational difference: California compared to the rest of the U.S.

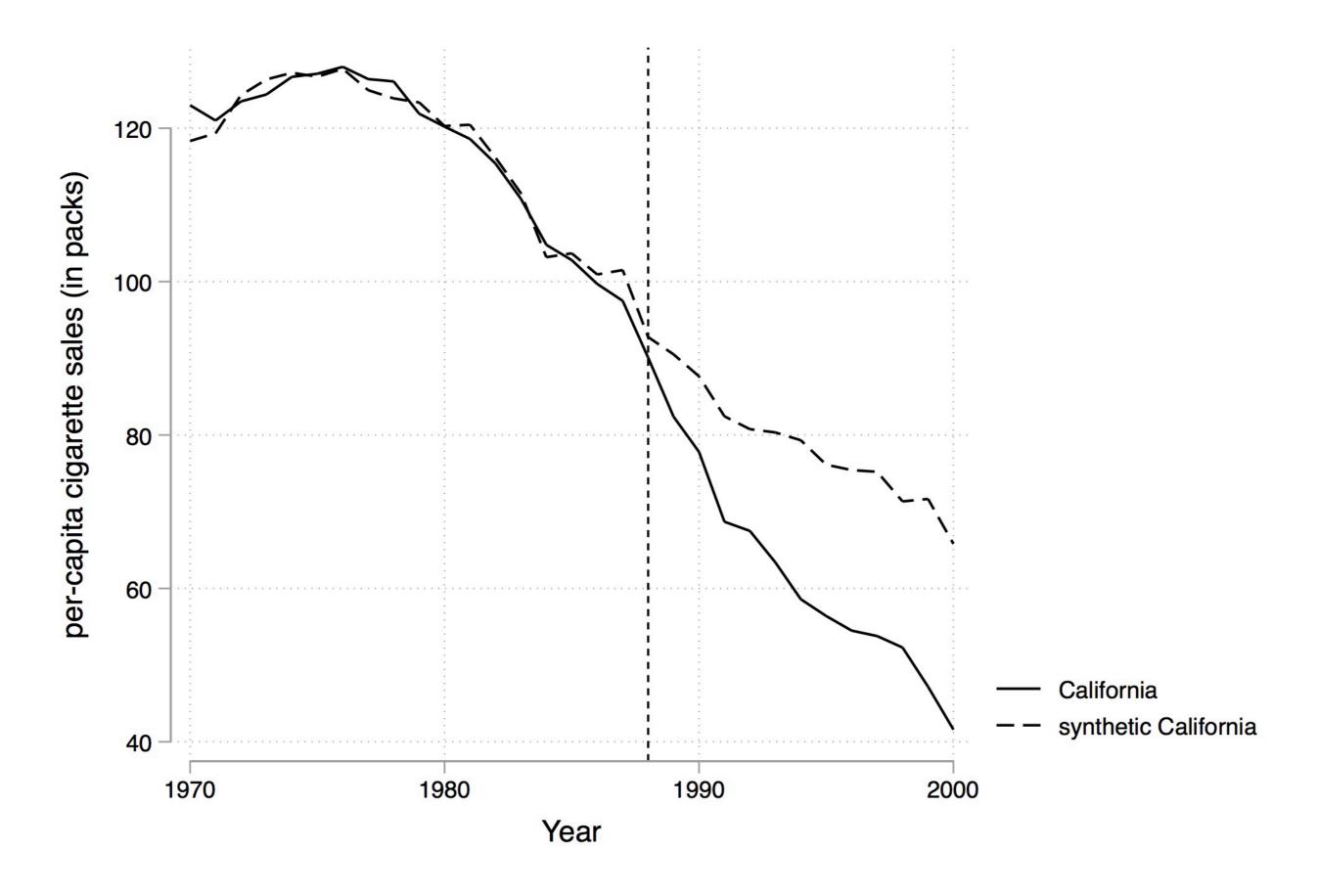


Example Applications of Synthetic Control

Analysis of the impacts of Proposition 99, a cigarette tax on cigarette sales in California

- States were matched on GDP, share of the population aged 15–24, retail prices, beer consumption, and cigarette sales per capita in earlier years
- A synthetic California was created using data from Utah (33%), Nevada (23%), Montana (20%),
 Colorado (16%), and Connecticut (7%)

California compared to a *synthetic* control *California* constructed of shares of other states



Measures to match school districts

Economic Characteristics

- Unemployment
- GDP or income
- Economic activity related to tourism or gaming

COVID-19

- Case counts
- In-person enrollment or modality

Policy Landscape

 Exclude states with recent funding formula changes

District Characteristics

- Urbanicity
- District size
- Academic performance in math and English
- Per pupil spending
- Composition of the student population by demographic characteristics,
 - Race, socioeconomic status, students with disabilities, English learners, etc.

Stanford Education Data Archive

Dataset that links data sources on student outcomes for within- and across-state comparisons in educational outcomes

- EdFacts data on Mathematics and Reading/Language Arts
- State-reported accountability data
- Expressed in a standardized scale by linking state-specific data with National Assessment of Educational Progress (NAEP) data

Most recent data published in March 2024 is the first to include data on post-2020 outcomes

Addressing the impacts of COVID-19

Significant variation in COVID-19 case rates, access to in-person schooling in first years of new funding formula

Therefore, exposure to impacts of new funding formula also varied

Using school-level data from the COVID-19 School Data Hub, we can control for the following:

- Learning modality (virtual, hybrid, in-person)
- Enrollment by learning modality
- COVID-19 case counts among students and/or staff

