Nevada Department of Education
Nerada Ready!

ELD STANDARDS FRAMEWORK FOR DEVELOPING THE LANGUAGE OF MATH GRADES 6-8

ELD STANDARDS FRAMEWORK FOR DEVELOPING THE LANGUAGE OF MATH GRADES 6-8

Table of Contents
SECTION 1: ELD STANDARDS FRAMEWORK FOR DEVELOPING THE LANGUAGE OF MATH GRADES 6-8-OVERVIEW 3
Section 1: Purpose 3
Section 1: Key Uses of Academic Language 4
SECTION 2: ELD STANDARDS FRAMEWORK FOR DEVELOPING THE LANGUAGE OF MATH GRADES 6-8.5
Section 2A: Student Moves: Language Expectations 5
Section 2B: Teacher Moves: Supports for Developing Interpretive and Expressive Language 7
Section 2C: Teacher Moves: Supports for Collaborating in the Academic Language 8
SECTION 3: INSTRUCTIONAL GUIDANCE 9
SECTION 3: INSTRUCTIONAL GUIDANCE: MATH PRACTICES GRADES 6-8 10
Section 3A: Summary: Content Disciplinary Practices and Example Tasks 10
Section 3B: Math Disciplinary Practices 14
Practice 1a: Make Sense of Problems and Persevere in Solving Them - Teacher Moves. 14
Practice 1b: Make Sense of Problems and Persevere in Solving Them - Success Criteria 15
Practice 2a: Reason Abstractly and Quantitatively - Teacher Moves 16
Practice 2b: Reason Abstractly and Quantitatively - Success Criteria 17
Practice 3a: Construct Viable Arguments and Critique the Reasoning of Others - Teacher Moves 18
Practice 3b: Construct Viable Arguments and Critique the Reasoning of Others - Success Criteria 19
Practice 4a: Model with Mathematics - Teacher Moves 20
Practice 4b: Model with Mathematics - Success Criteria 21
Practice 5a: Use Appropriate Tools Strategically - Teacher Moves 22
Practice 5b: Use Appropriate Tools Strategically - Success Criteria 23
Practice 6a: Attend to Precision - Teacher Moves 24
Practice 6b: Attend to Precision - Success Criteria 25
Practice 7a: Look For and Make Use of Structure - Teacher Moves 26
Practice 7b: Look For and Make Use of Structure - Success Criteria 27
Practice 8a: Look For and Express Regularity in Repeated Reasoning - Teacher Moves 28
Practice 8b: Look For and Express Regularity in Repeated Reasoning - Success Criteria 29

SECTION 1: ELD STANDARDS FRAMEWORK FOR DEVELOPING THE LANGUAGE OF MATH GRADES 6-8-OVERVIEW

Section 1: Purpose

The purpose of the English Language Development (ELD) Standards Framework and Instructional Guidance documents is to provide clarity in the implementation and integration of the Nevada ELD Standards with Nevada Academic Content Standards and instruction. In addition, they support the application of the Nevada Educator Performance Framework (NEPF) Standards of best practices for multilingual learners and other diverse student populations.

These Nevada ELD Standards documents specify the connection between the WIDA ELD Standards and the content disciplinary practices of mathematics. The practices identified in this document were created within the Common Core State Standards (CCSS) for Mathematics. The ELD Standards Instructional Guidance documents conceptualize the Nevada ELD Standards as intertwined with learning the Nevada Academic Content Standards and College and Career Readiness Standards.

Section 1: Overview Document

Section 2: Framework for Developing the Language of Math
A. Student Moves: Language Expectations
B. Teacher Moves: Supports for Interpreting and Expressing in the Language of the Content
C. Teacher Moves: Supports for Collaborating in the Academic Language

Section 3: Instructional Guidance: Mathematical Practices
A. Summary: Content Disciplinary Practices and Example Tasks
B. Math Disciplinary Practices

- Practice 1: Make sense of problems and persevere in solving them
- Practice 2: Reason abstractly and quantitatively
- Practice 3: Construct viable arguments and critique the reasoning of others
- Practice 4: Model with mathematics
- Practice 5: Use appropriate tools strategically
- Practice 6: Attend to precision
- Practice 7: Look for and make use of structure
- Practice 8: Look for and express regularity in repeated reasoning

Section 1: Key Uses of Academic Language

These purposes, referred to as Key Uses, were identified based on reviews of literature and a language analysis of college and career readiness standards:

$\begin{aligned} & \text { KEY } \\ & \text { USES } \end{aligned}$	KEY USES DESCRIPTION
NARRATE	Highlights language to convey real or imaginary experiences through stories and histories. Example tasks for the Key Use of Narrate include telling or summarizing stories, sharing past experiences, recounting an incident, or to chronicle a report.
INFORM	Highlights language to provide factual information, to tell, give knowledge, apprise, notify, to make aware of ideas, actions, or phenomena. Example tasks for the Key Use of Inform include defining, describing, comparing, contrasting, categorizing, or classifying concepts, ideas, or phenomena.
EXPLAIN	Highlights language to give an account for how things work or why things happen to clarify ideas, actions, or phenomena. Example tasks for the Key Use of Explain include interpreting, elaborating, illustrating, simplifying ideas, actions, or phenomena.
ARGUE	Highlights language to justify claims using evidence and reasoning, constructing arguments with evidence, or stating preferences or opinions. Example tasks for the Key Use of Argue include advancing or defending an idea or solution, changing the audience's point of view, or evaluating an issue.
DISCUSS	Highlights language to interact with others to build meaning and to share knowledge. Example tasks for the Key Use of Discuss includes participating in small or large group activities and projects. Discuss can be found in Standard 1: Language of Social and Instructional Purposes of the WIDA 2002 Standards Framework.

SECTION 2: ELD STANDARDS FRAMEWORK FOR DEVELOPING THE LANGUAGE OF MATH GRADES 6-8

Section 2A: Student Moves: Language Expectations

With appropriate instructional support (visual, graphic, and interactive), multilingual learners can...

Language Domains	Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Interpretive: Listening, Viewing	- Identify language of basic components of coordinate planes, graphs or equations from figures and oral statements. - Compare angles from figures and oral commands. - Identify basic components of multi-dimensional shapes from visually supported words or phrases. - Pair descriptions of multidimensional shapes or their components with visually supported sentences.	- Match specific language of complex graphs, equations or coordinate planes with figures and detailed oral descriptions. - Compare/contrast graphs, equations or coordinate planes from figures and oral scenarios using some technical language. - Compare/contrast multi-dimensional shapes or arguments within visually supported text. - Match specific and some technical language associated with components of geometric arguments, constructions or shapes to visually supported text.	- Analyze graphing techniques, graphical models or equations from oral reading of grade-level material (e.g., best fit lines, connections between multiple representations). - Analyze and defend geometric arguments, theorems or shapes (e.g., examples v. proofs).

Section 2A: Student Moves: Language Expectations (continued)

With appropriate instructional support (visual, graphic, and interactive), multilingual learners can...

Language Domains	Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Expressive: Speaking, Representing	- Name variables from illustrations and notation. - Relate functions of two variables from illustrations and notation. - Produce elements of equations or formulas from word/phrase banks and models (e.g., labeling diagrams). - Describe equations or formulas using figures and notation from word/phrase banks and models.	- State examples of representations of functions of two variables from illustrations and notation. - Interpret representations of functions of two variables with or without visual support. - Sequence steps from solving problems involving equations or formulas using figures, notation, and sequential language. - Explain uses of equations or formulas using figures, notation, and complex sentences.	- Analyze functions of one variable in relation to another (e.g., rates of change, intercepts, zeros, asymptotes). - Summarize procedures for solving problems involving formulas and equations (e.g., geometry problems involving algebra).

Section 2B: Teacher Moves: Supports for Developing Interpretive and Expressive Language

What general supports can teachers provide to students at different language proficiency levels to interpret and express academic language in all language domains?

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Build background in key language and concepts. - Provide explicit instruction and practice in key social and instructional vocabulary. - Model orally the academic language and specific vocabulary. - Provide explicit instruction and practice for students to construct the language using sentence and discourse starters and visual aids from the text. - Use physical gestures to accompany oral directives. - Label visuals and objects with target vocabulary. - Introduce cognates to aid comprehension - Give two step Contextualized directions. - Restate/rephrase and use Patterned Oral Language routines. - Use Wait Time before and after questions. - Provide a list of important concepts on a graphic organizer. - Provide a content vocabulary Word Bank with non-linguistic representations. - Provide opportunities for translanguaging and multilingual support during the task.	- Build background in key language and concepts. - Model orally the academic language and specific vocabulary. - Provide explicit instruction and practice for students to construct the language using sentence and discourse starters and visual aids from the text. - Provide a system for students to record and process key academic and content- specific vocabulary. - Check Comprehension of all students frequently. - Use Wait Time. - Ask open-ended questions and require full sentence responses. - Require the use of academic language. - Provide a list of important concepts on a graphic organizer. - Provide a content vocabulary Word Bank with non-linguistic representations. - Provide opportunities for translanguaging and multilingual support during the task.	\bullet Build background in key language and concepts. - Use complex sentence and discourse starters. - Model orally the academic language and specific vocabulary. - Confirm students' prior knowledge of content topics. - Extend content vocabulary with multiple examples and non-examples. - Provide opportunities for translanguaging during the task. - Provide tasks that encourage discourse and then facilitate and support discourse between and among students.

Section 2C: Teacher Moves: Supports for Collaborating in the Academic Language

How can teachers provide ongoing opportunities for students to collaborate using academic language?

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Prior to reading, writing, and discussion, Teacher prepares collaborative discourse structures for students to... - Engage in pair work (in L1 if possible) to prepare questions for discussion using graphic, interactive, and/or language supports. - Participate in pair/triad/small group discussions using graphic, interactive, and/or language supports (including L1 as appropriate). - Use Clock Buddies. - Use Numbered Heads Together. - Use Think-Pair-Share Squared. - Use key sentence frames for pair interactions. - Participate with Strategic Partners at a higher English proficiency level and/or with the same primary language peer(s). - Use Cloze sentences with a Word Bank. - Use dialogue structures (e.g.): My turn/ your turn; Partner A/Partner B; Collaborative groups. - Model and encourage students to build upon their own ideas and those of others in shared languages.	Prior to reading, writing, and discussion, Teacher prepares collaborative discourse structures for students to... - Engage pair work to prepare questions for discussion using graphic, interactive, and/or language supports as needed. - Contribute to pair/triad/small group discussions by supporting with examples, asking clarifying questions, and using graphic, interactive, and/or language supports as needed. - Engage with whole/large group discussions by connecting ideas with supporting details, generating original questions, and using graphic, interactive, and/or language supports as needed. - Use Think-Pair-Share. - Repeat and expand their responses and other students' responses in a Collaborative Dialogue. - Use dialogue structures (e.g.): My turn/ your turn; Partner A/Partner B; Collaborative groups. - Model and encourage students to build upon their own ideas and those of others.	Prior to reading, writing, and discussion, Teacher prepares collaborative discourse structures for students to... - Engage in structured pair work to process. - Inform and formulate thinking, then prepare questions for discussion. - Contribute to pair/triad/small group discussions to share individual ideas and compare with other ideas in the group, using graphic, interactive, and/or language supports as needed. - Engage with whole/large group discussions by generating original questions and/or building on the ideas of others using graphic, interactive, and/or language supports as needed. - Use oral reporting for summarizing group work. - Use dialogue structures (e.g.): My turn/ your turn; Partner A/Partner B; Collaborative groups. - Model and encourage students to build upon their own ideas and those of others.

SECTION 3: INSTRUCTIONAL GUIDANCE
 for English Language Development in the Content Area of
 Mathematical Practices Grades 6-8

SECTION 3: INSTRUCTIONAL GUIDANCE: MATH PRACTICES GRADES 6-8

Section 3A: Summary: Content Disciplinary Practices and Example Tasks

Table of example tasks for each practice, with sample proficiency descriptors for each Key Use of Academic Language: (For a complete continuum of grade-level Proficiency Level Descriptors to support mastery of content area standards, see WIDA ELD Standards 2020) WIDA English Language Development Standards Framework, 2020 Edition Kindergarten - Grade 12 (wisc.edu)

Math Practices	Example Tasks	Inform	Explain	Argue	Discuss
1. Make sense of problems and persevere in solving them.	Diminishing Return \| Inside Mathematics	Proficient students can make sense of problems by summarizing their knowledge of ratio reasoning in sharing solutions with others using first person (I, We) to describe approach, third person to describe approach with neutral stance of authority.	Proficient students can explain their strategy to solve a mathematical task by stating reasoning used to generate a solution through causal connectors to express reasoning (We took these steps to solve problems with ratios because...).	Proficient students can justify and defend their strategy to solve a mathematical task through evidence and mathematical facts through conditional structures (if/then, when) to demonstrate conclusions.	Proficient students can elaborate, and extend the mathematical reasoning of others by utilizing everyday, crossdisciplinary, and technical language.
2. Reason abstractly and quantitatively.	Properties of Real Numbers/Solve Linear Equations Task Details: Sammy's Chipmunk and Squirrel Observations	Proficient students can reason abstractly and quantitatively by introducing concepts through relating verbs (belong to, are part of, be, have) to describe their problem-solving strategy used in a mathematical task to solve a linear equation.	Proficient students can explain their strategy to solve a mathematical task by stating reasoning used to generate a solution through causal connectors (We took these steps to solve the problem of how many acorns the chipmunk hid...).	Proficient students can justify their use of strategies and communicate them to others using mathematical facts through technical nouns and noun groups to add precision and details (one-variable equations).	Proficient students can elaborate and extend the mathematical reasoning of others by evaluating and critiquing the arguments to engage with others (I don't think you can...; I think you have to use this...).

Math Practices	Example Tasks	Inform	Explain	Argue	Discuss
3. Construct viable arguments and critique the reasoning of others.	Dan's Division Strategy	Proficient students can introduce and convey mathematical concepts through verbs (belong to, are part of, be, have) to analyze strategies to produce clear and precise arguments that the strategies used will work in all similar problems.	Proficient students can explain their strategy to solve a mathematical task by stating reasoning used to generate a solution through causal connectors to express reasoning (We took these steps to solve the problem because...).	Proficient students can... - justify and persuade others in their use of strategies through models, equations, drawings to demonstrate principles along with conditional structures (if/then, when) to demonstrate conclusions. - evaluate and critique others' arguments through questions (what, how, why) requests (could, would) to request information, clarification, procedure (Could you show me how you got that answer? Why did you do... instead	Proficient math students recount, elaborate, and extend the mathematical reasoning of others by utilizing everyday, crossdisciplinary, and technical language.
4. Model with mathematics.	Sale!	Proficient students can share solutions with others by describing the approach in the model to solve a mathematical problem using first person (I, We) or third person to describe the approach with a neutral stance of authority.	Proficient students can explain problemsolving strategies through visual displays (tables, data charts, formula calculations) to clarify the approach and solution to solve a mathematical task.	Proficient students can justify and defend their use of strategies through conjecture using conditional conjunctions (if or when) to make and justify conjecture. (If I find the discounts of...; The discounts show...).	Proficient students can recount, elaborate, and extend the mathematical reasoning of others by evaluating and critiquing through questions (what, how, why, do) requests (could, would) to request information, clarification, procedure (Could you show me how you got that answer? Why did you do ... instead of ...?

Math Practices	Example Tasks	Inform	Explain	Argue	Discuss
5. Use appropriate tools strategically.	Ducklings - Median and Mean	Proficient students can select and use appropriate tools aligned to the mathematical task and describe why they use it by introducing the tool through mathematical terms and phrases to describe median and mean concept, process, or purpose.	Proficient students can explain their strategy to solve a mathematical task by stating reasoning used to generate a solution through causal connectors to express reasoning (We took these steps to solve the problem of median and mean because...)	Proficient students can justify and defend conclusions with evidence and mathematical facts in their use of the tools through conditional structures (if/then, when) to demonstrate conclusions.	Proficient can students elaborate, and extend the mathematical reasoning of others by evaluating and critiquing others' arguments through questions (what, how, why, do) requests (could, would) to request information, clarification, procedure (Could you show me how you got that answer? Why did you do ... instead of ... ?
6. Attend to precision.	Compare Freezing Points	Proficient students can describe and summarize using mathematically correct language and symbols through passive voice verbs to explain. (This variable is given a value of...)	Proficient students can elaborate by introducing entities through mathematical terms and phrases to describe concepts (freezing point, temperature).	Proficient students can justify conclusions with evidence and mathematical facts through models, drawings, graphs to demonstrate principles.	Proficient students can recount, elaborate, and extend the mathematical reasoning of others utilizing everyday, crossdisciplinary, and technical language.

Math Practices	Example Tasks	Inform	Explain	Argue	Discuss
7. Look for and make use of structure.	Find the Missing Angle	Proficient students can identify and describe mathematical structures by introducing concepts through mathematical terms and phrases (auxiliary lines, parallel, perpendicular, angles, triangles).	Proficient students can explain their strategy to solve a mathematical task through passive voice verbs to show or analyze. (The angle is given a value of ...).	Proficient students can justify and defend conclusions with evidence and mathematical facts through conditional structures (If/then, when) to identify and make use of structures (auxiliary lines, parallel, perpendicular, angles, triangles) to solve a mathematical task.	Proficient students can recount, elaborate, and extend the mathematical reasoning of others by evaluating and critiquing others' arguments through questions (what, how, why) requests (could, would) to request information, clarification, procedure (Could you show me how you got that answer?)
8. Look for and express regularity in repeated reasoning.	Extending the Definition of Exponents, Variation 1	Proficient students can identify and describe repeated reasoning of intermediate results by sharing solutions with others through generalized nouns to add precision to discussion (distributions, probability, frequencies).	Proficient students can explain their strategy to solve a mathematical task through visual data displays (tables, data charts) to clarify approach and/or solution (repeated reasoning, generalizations, patterns),	Proficient students can generalize logic across cases through declarative statements to present generalizable processes (The equation...can be used to find any value in the pattern).	Proficient students can recount, elaborate, and extend the mathematical reasoning of others through causal connectors (so, because, therefore) to identify misconceptions (The pattern is...)

Distribution of Math Key Language Uses in Grades 6-8					
WIDA ELD STANDARD	Narrate	Inform	Explain	Argue	
1. Language for Mathematics	\bigcirc	0		\bigcirc	
Most Prominent	D Prominent	Present			

Adapted from the WIDA 2020 Standards Framework p. 290-292

Section 3B: Math Disciplinary Practices

Practice 1a: Make Sense of Problems and Persevere in Solving Them - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Provide scaffolded tasks for students to draw a picture of the problem and of their solution and label it. - Provide simple patterned oral and written sentence frames for students to emulate/copy basic content provided with a predetermined learning partner. - Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression. - Provide sentence frames or sentence starters for students to use to access group discussion. For example: My answer makes sense because \qquad . I hadn't thought about \qquad Can you please repeat that? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding of problems and strategies for solutions. - Model consistently a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I solved the problem by \qquad . I first \qquad Then I \qquad Finally, I \qquad . (To describe their process.) I think \qquad because \qquad What do you know? What do you need to find out? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model consistently predetermined dialogue structures for students to state and clarify their reasoning while providing evidence to a partner or small group. Listen to the ideas of others and then agree or disagree by providing reasons to ensure the participation of all students. - Provide students with sentence starters from a list of statements using more complex language. For example: In this problem, I noticed that \qquad . In order to solve the problem, I \qquad Information that I need is \qquad because \qquad The best way to solve this problem is \qquad because \qquad . What would be sensible to try? Why? Does this strategy/solution make sense? Why? Why Not? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 1b: Make Sense of Problems and Persevere in Solving Them - Success Criteria

Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps used to solve problems and inform others using words, pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, produce and label a graphic representation (illustration or number) illustrating their strategy for solving problems. - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies and solutions. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 2a: Reason Abstractly and Quantitatively - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Provide scaffolded tasks for students to draw a picture of their solution and to label it. - Provide simple patterned oral and written sentence frames for students to emulate/copy basic content provided with a predetermined learning partner. - Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression. - Provide sentence frames or sentence starters for students to use to access group discussion. For Example: The numbers I can use to represent this problem are \qquad - Questions for students: What is the problem asking you to figure out? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I know \qquad because \qquad . I learned \qquad - Questions for students: What do the numbers in the problem represent? What do the words in the problem mean? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model consistently predetermined dialogue structures for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: A different way to find the answer is \qquad . I noticed that \qquad (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 2b: Reason Abstractly and Quantitatively - Success Criteria

Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 3a: Construct Viable Arguments and Critique the Reasoning of Others - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
• Provide scaffolded tasks for students to		
draw a picture of their solution and to	• Provide learning tasks in which students can use illustrations or numbers to explain their understanding.	• Provide learning tasks in which students can use illustrations or numbers to explain their understanding.

- Provide simple patterned oral and written sentence frames for students to emulate/copy basic content provided with a predetermined learning partner.
- Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression.
- Provide sentence frames or sentence starters for students to use to access group discussion. For example: How do you know that? My answer is \qquad -. My solution is \qquad . I think my error is here (point).
- Questions to ask students: Why did you decide to do it that way?
(NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)
- Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students.
- Provide students with sentence starters from a leveled list of scaffolding statements.

For example: I used this strategy because
\qquad . My answer is correct because
\qquad . Your answer is incorrect because

- Questions to ask students: Can you explain how or why you did this? Why do you think
\qquad did \qquad ?
(NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)
- Model consistently predetermined dialogue structures for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students.
- Provide students with sentence starters from a leveled list of scaffolding statements.
For example: I agree/disagree with you because \qquad I wonder if \qquad . 1
did this because \qquad I think this is
where you made your error \qquad because \qquad . I can justify my answer by \qquad _.
- Questions to ask students: How do you know that? Do you agree with Johnny's answer? Why?
(NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 3b: Construct Viable Arguments and Critique the Reasoning of Others - Success Criteria

Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 4a: Model with Mathematics - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Provide scaffolded tasks for students to draw a picture of their solution and to label it. - Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression. - Provide sentence frames or sentence starters for students to use to access group discussion. For example: I drew \qquad . The graph shows \qquad My answer is correct because I used the \qquad model. - Questions to prompt students: Is this an example of a model? How would you use this model? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I used this model because \qquad . I drew \qquad because \qquad - Questions to prompt students: What picture can you draw to help you? What can we use for a model? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model consistently predetermined dialogue structures for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I can explain my solution to others by \qquad . I have seen this before when \qquad - Questions to prompt students: What model did you use? Is there another way to represent that? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 4b: Model with Mathematics - Success Criteria
Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will.. - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 5a: Use Appropriate Tools Strategically - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Provide scaffolded tasks for students to draw a picture of their solution and to label it. - Provide simple patterned oral and written sentence frames for students to emulate/copy basic content provided with a predetermined learning partner. - Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression. - Provide sentence frames or sentence starters for students to use to access group discussion. For example: The tool I used showed me \qquad . The best tool to use is - Questions to prompt students: Is this an example of a tool? How would you use this tool? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I used this tool because \qquad . My answer is correct because of the \qquad tool I used to solve the problem by doing \qquad Questions to prompt students: What can you use to help you solve this problem? Can you tell me more about the tool that you used \qquad ?	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: This tool, \qquad helps me prove my solution to others by \qquad I agree/disagree with \qquad 's choice \qquad tool, but I chose \qquad instead/also because \qquad . I could have used \qquad (tool) to \qquad . - Questions to prompt students: Why did you choose that tool to solve the problem? Is there a better tool that you can use? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 5b: Use Appropriate Tools Strategically - Success Criteria

Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using an appropriate tool-pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using an appropriate tool: pictures, charts, tables, etc. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies using an appropriate tool. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 6a: Attend to Precision - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Provide scaffolded tasks for students to draw a picture of their solution and to label it. - Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression. - Provide sentence frames or sentence starters for students to use to access group discussion. For example: I used the term \qquad when working with this problem. I didn't understand \qquad . The math term \qquad means \qquad . I labeled it \qquad - Questions to prompt students: What do you notice? Is there a word you don't understand? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I know my answer is accurate because \qquad . I used the label \qquad because \qquad - Questions to prompt students: Does your answer need a label in order to be precise? What terms should you use to be precise? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I used the mathematical term \qquad to explain \qquad . My answer is \qquad rather than \qquad because \qquad . - Questions to prompt students: Can you explain why you used (significant digits) for your answer? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 6b: Attend to Precision - Success Criteria

Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 7a: Look For and Make Use of Structure - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Provide scaffolded tasks for students to draw a picture of their solution and to label it. - Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression. - Provide sentence frames or sentence starters for students to use to access group discussion. For example: I noticed \qquad . I tried \qquad . They are similar because \qquad ? - Questions to prompt students: What do you notice? Is there a pattern? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I already know \qquad so \qquad . This reminded me of \qquad - Questions to prompt students: Have you done a similar type of problem before? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: I noticed the connection between \qquad and \qquad . How is \qquad related to \qquad ? - Questions to prompt students: What do both problems have in common? What patterns do you see? What do you know about \qquad that you can apply to this situation? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 7b: Look For and Make Use of Structure - Success Criteria

Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 8a: Look For and Express Regularity in Repeated Reasoning - Teacher Moves

Teacher Moves: What supports can teachers provide students at different proficiency levels to use language to interpret or make meaning of the content? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
- Provide scaffolded tasks for students to draw a picture of their solution and to label it. - Provide simple patterned oral and written sentence frames for students to emulate/copy basic content provided with a predetermined learning partner. - Model the language of mathematical expressions for students to label the mathematical expressions with a predetermined learning partner; have students state the academic vocabulary associated with the number or illustrated expression. - Provide sentence frames or sentence starters for students to use to access group discussion. For example: I wonder/noticed \qquad . Conclusion is \qquad - Questions to prompt students: What do you notice? Is there a pattern? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: The pattern/rule I noticed was \qquad because \qquad . This is the same because \qquad . This is true because \qquad . Based on the information, I can conclude \qquad Questions to prompt students: How could this problem help you solve another? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)	- Provide learning tasks in which students can use illustrations or numbers to explain their understanding. - Model a predetermined dialogue structure for students to state and clarify their reasoning to a partner or small group and listen to the ideas of others to agree or disagree with reasons to ensure the participation of all students. - Provide students with sentence starters from a leveled list of scaffolding statements. For example: If \qquad then \qquad I generalize that \qquad The trend of the data is \qquad because \qquad - Questions to prompt students: What generalizations can you make? Can you find a short cut to solve the problem? (NEPF - IP.1.2; 2.1; 2.2; 3.1; 3.2; 5.3)

Section 3B: Math Disciplinary Practices (continued)

Practice 8b: Look For and Express Regularity in Repeated Reasoning - Success Criteria

Success Criteria: How will students be able to communicate or demonstrate their learning of language and content at different language proficiency levels? Examples:

Entering/Emerging (Levels 1-2)	Developing/Expanding (Levels 3-4)	Bridging/Reaching (Levels 5-6)
Success Criteria With prompting and supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Solve problems and identify the associated academic vocabulary on Exit Slips and other formal or informal assessments. - Describe steps to solve problems using pictures, symbols, or artifacts. (NEPF - IP.1.3; 2.2; 3.4; 5.3)	Success Criteria With appropriate supports, students will... - Orally explain, justify, and defend their problem-solving strategies. - Use specific and technical academic vocabulary in their explanation, justification, and defense of one of the preferred student strategies. Assessment Tool Assessing the 8 Mathematical Practices Rubric (NEPF - IP.1.3; 2.2; 3.4; 5.3)

